About  |   Contact  |  Mongabay on Facebook  |  Mongabay on Twitter  |  Subscribe
Rainforests | Tropical fish | Environmental news | For kids | Madagascar | Photos

China-Foreign Learning and Chinese Learning

Mongabay.com seeks to raise interest in and appreciation of wild lands and wildlife, while examining the impact of emerging trends in climate, technology, economics, and finance on conservation and development (more)


China Index

Western mathematics and science were introduced to China in the seventeenth and eighteenth centuries by Jesuit missionaries but had little impact. In the nineteenth century, the trauma of repeated defeat at the hands of Western invaders (in 1840-41 and 1860) finally convinced some Chinese leaders of the need to master foreign military technology. As part of the Self-Strengthening Movement in the 1860s, a number of foreign-style arsenals, shipyards, and associated training schools were established (see The Self-Strengthening Movement , ch. 1). The initial effort to produce steamships and artillery led, step-by-step, to recognition of the need to master metallurgy, chemistry, mathematics, physics, and foreign languages. The last decades of the century saw the establishment, under the auspices either of the imperial government or of foreign missionaries, of secondary schools and colleges teaching science, as well as the movement of Chinese students to advancd studies in Japan, the United States, and Europe.

Individual Chinese students had no great difficulty mastering Western science, but the growth in their numbers and potential influence posed a challenge to the Confucian scholar-officials who dominated the imperial government and Chinese society. Such officials were reluctant to grant foreign-trained scientists and engineers a status equal to that of Confucian scholars, and they were suspicious of foreign ideas about politics and social organization, such as professional autonomy, freedom of speech and assembly, and experiments rather than written texts as validation of propositions. Nineteenth-century officials attempted to control the influx of foreign knowledge and values, distinguishing militarily useful technology, which was to be imported and assimilated, from foreign philosophy, religion, or political and social values, which were to be rejected. The slogan "Chinese learning for the essence, Western learning for utility" expressed this attitude. Although the terms were no longer used, the fundamental issue remained significant in the 1980s, as the Chinese Communist Party attempted to distinguish between beneficial foreign technology and harmful and "polluting" foreign ideas and practices. Throughout the twentieth century, China's political leaders have had a deeply ambivalent attitude toward science and technology, promoting it as necessary for national defense and national strength but fearing it as a carrier of threatening alien ideas and practices.

By 1900 China's science and technology establishment, minimal though it was, already manifested several features that would characterize it throughout the twentieth century. Although China's early scientific achievements were a source of national pride, they had no direct influence on the practice and teaching of science in China, which was based on foreign models and foreign training. As a group, China's scientists, with their foreign education, foreignlanguage competence, and exposure to foreign ideas of science as an autonomous, international, and professional activity, formed the most cosmopolitan element of the population. China's scientists, more than their foreign counterparts, were motivated by patriotism and the desire to help their country through their work, and many deliberately chose applied over basic scientific work. Chinese intellectuals were influenced by the Confucian teachings that intellectuals had special responsibilities toward their society and should play a role in public affairs. Much scientific work was done under government patronage, direction, and funding. The government, whether imperial or republican, was interested in science for what it could contribute to national development and military power, and it saw science as a means rather than as an end in itself. The first major publisher of translations of scientific works was the Jiangnan Arsenal, founded in Shanghai in 1866, which published nearly 200 basic and applied scientific texts originally written in English, French, or German.

In the first two decades of the twentieth century an increasing number of colleges and universities were founded, and growing numbers of Chinese students were educated abroad. The Science Society of China, whose membership included most of the country's leading scientists and engineers, was founded by Chinese students at Cornell University in 1914. In 1915 it began publication in China of a major journal, Kexue (Science), which was patterned on the journal of the American Association for the Advancement of Science. In 1922 the Society established a major biological research laboratory in Nanjing. The Society devoted itself to the popularization of science through an active and diverse publication program, the improvement of science education, and participation in international scientific meetings.

The establishment of the Guomindang government at Nanjing in 1927 was followed by the creation of several government research and training institutions (see Republican China , ch. 1). The Academia Sinica, founded in 1928, had a dozen research institutes, whose personnel did research and advised the government. The late 1920s and early 1930s saw the establishment of many research institutes, such as the Fan Memorial Biological Institute in Beijing and the Beijing Research Laboratory, which eventually formed departments in physics, biology, pharmacology, and other fields. Most of the research institutes were characterized both by very limited funds and personnel and by productive, high- quality scientific work. By the 1930s China possessed a number of foreign-trained scientists who did research of high quality, which they published in both Chinese and foreign scientific journals. These scientists worked in the major universities or in research institutes funded by the government or foreign organizations (such as missionary groups and the Rockefeller Foundation) and were concentrated in Beijing, Nanjing, and Shanghai.

Between 1937 and 1949, China's scientists and scientific work suffered the ravages of invasion, civil war, and runaway inflation. Funds to support research, never ample, almost totally disappeared, and most scientists were forced to devote most of their energies to teaching, administration, or a government job. In a change from the earlier pattern, many students opted not to return to China after foreign education, choosing instead to seek careers abroad.

Data as of July 1987

Copyright mongabay 2000-2013